Как проводить измерения мегаомметром

Видео

Чтобы измерить значение сопротивления, а также выявить дефекты кабелей и проводок электрических сетей, используют специально разработанное для этого приспособление мегаомметр.

В названии аппарата ясно распознаются три слова:

“Мега”, ” Ом”, и ”Метр”, где первое слово подразумевает значение измеряемой величины, второе — единицу измерения и третье производное от слова “измерить”.

В основе рабочего процесса мегаомметра лежат принципы закона Ома, касающиеся участков электрической цепи, поэтому любая модификация прибора содержит во внутренней части корпуса:

  • измерительную систему тока (амперметр);
  • набор выходных клемм;
  • генератор постоянного напряжения.

Конструктивные особенности генераторов напряжения могут изменяться в довольно широких границах. В основу их производства положены простые ручные динамо-машины, которые использовались раньше. Современные генераторы оснащены встроенными или внешними источниками питания.

Показатели выходной мощности и напряжения генератора могут варьироваться в пределах нескольких интервалов, а также иметь единственную, фиксированную величину.

Соединительные провода с одной стороны подключают к клеммам мегаомметра, а с другой фиксируют в измеряемой цепи при помощи “крокодилов”. Это специальные приспособления, предназначенные для более надежного соединения.

С помощью амперметра, который встроен внутри агрегата, измеряют показатели проходящего по цепи тока.

На шкале одного из самых надежных проверенных аналоговых мегаомметров, выпущенных около пятидесяти лет назад М4100/5, расположено две шкалы, что позволяет выполнить замер на двух границах. Новые технологии отображают показания сопротивления более наглядно. На цифровой дисплей выводится уже обработанный цифровой сигнал.

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

Сам прибор не должен иметь никаких механических повреждений корпуса

Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
Любой тестируемый объект или линия в обязательном порядке обесточивается. Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки

В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.

Перед тестированием сопротивления изоляции проводится полное обесточивание объекта

На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования

От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников

Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить»

Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.

Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.

Переносное заземление заводского производства. Нечто подобное делается и собственными руками.

Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.

После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.

Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
Необходимо правильно обращаться со щупами

Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности

Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.

Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.

После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.

На что обращать внимание при работах с мегаометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Проверка сопротивления изоляции кабеля мегаомметром

Вот и отпуску конец. Сегодня рассмотрим тему взаимоотношения силового электрического кабеля и мегаомметра. Здесь будет присутствовать два вопроса: прозвонка и проверка сопротивления изоляции. В зависимости от вида мегаомметра (стрелочный или цифровой) будет отличаться и порядок действий.

Для чего проверяют сопротивление изоляции кабеля?

Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция — пластмассовая, резиновая, ПВХ, бумажная, масляная.

Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).

Сопротивление — это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.

Изоляция может ухудшаться по следующим причинам:

  • старение изоляции в течении времени
  • увеличенная влажность
  • механические повреждения
  • воздействие агрессивной среды

Допустимые значения сопротивления изоляции

Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:

  • испытываются мегаомметром на 2500В на протяжении 1 минуты
  • значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
  • для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (. КАБЕЛЬ ОБЕСТОЧЕН. ):

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно — объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) — он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром — это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей — это тема отдельной большой статьи.

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Действие остаточного напряжения

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Классификация и принцип действия

Классификация

Омметр

  • По исполнению омметры подразделяются на щитовые, лабораторные и переносные
  • По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые

Магнитоэлектрические омметры

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx

включают последовательно. В этом случае сила токаI в измерителе равна:I = U/(r0 + rx) , гдеU — напряжение источника питания;r0 — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).

Согласно этой формуле, магнитоэлектрический омметр имеют нелинейную шкалу. Кроме того, она является обратной (нулевому значению сопротивления соответствует крайнее правое положение стрелки прибора). Перед началом измерения сопротивления необходимо выполнить установку нуля (скорректировать величину r0

) специальным регулятором на передней панели при замкнутых входных клеммах прибора, для компенсации нестабильности напряжения источника питания.

Поскольку типичное значение тока полного отклонения магнитоэлектрических микроамперметров составляет 50..200 мкА, для измерения сопротивлений до нескольких мегаом достаточно напряжения питания, которое даёт встроенная батарейка. Более высокие пределы измерения (десятки — сотни мегаом) требуют использования внешнего источника постоянного напряжения порядка десятков — сотен вольт.

Для получения предела измерения в единицы килоом и сотни ом, необходимо уменьшить величину r0

и соответственно увеличить ток полного отклонения измерителя путём добавления шунта.

При малых значениях rx

(до нескольких ом) применяется другая схема: измеритель иrx включают параллельно. При этом измеряется падение напряжения на измеряемом сопротивлении, которое, согласно закону Ома, прямо пропорционально сопротивлению, (при условииI =const).

ПРИМЕРЫ: М419, М372, М41070/1

Логометрические мегаомметры


Мегаомметр М1101М Основой логометрических мегаомметров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

ПРИМЕРЫ: ЭС0202, М4100

Аналоговые электронные омметры

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

ПРИМЕРЫ: Е6-13А, Ф4104-М1

Цифровые электронные омметры

Цифровой омметр Щ34


Микроомметр MOM600A Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

ПРИМЕРЫ: ОА3201-1, Е6-23, Щ34

Измерения малых сопротивлений. Четырёхпроводное подключение

При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.

Работа с электронным мегаомметром

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.
  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

В электрических цепях важнейшую роль играет сопротивление изоляции

Особенно это важно для высоковольтных установок. Напряжение промышленного тока 230/400В (220/380В по устаревшим стандартам) можно без сомнений считать высоким с точки зрения безопасности. Поэтому проверка сопротивления изоляции электроустановок всегда выполняется:

Поэтому проверка сопротивления изоляции электроустановок всегда выполняется:

  • при вводе электроустановки в эксплуатацию;
  • после окончания ремонтных работ;
  • периодически, для профилактики.

Для таких испытаний используется специальный прибор — мегаомметр. Из его названия следует, что он измеряет сопротивление в миллионах Ом. Поэтому работа с мегаомметром проводится с использованием высокого напряжения. Иначе нельзя получить электрического поля, близкого к реальным условиям, и слабый ток утечки невозможно измерить существующими приборами.

Необходимо знать, как пользоваться мегаомметром, этот прибор требует группу допуска 3 и выше по электробезопасности. На выходных клеммах прибора в момент измерений присутствует высокое напряжение порядка 500-2500В. При измерении сопротивления изоляции мегаомметром кабельных и других линий, или когда измеряется коэффициент абсорбции, в проводнике накапливается существенный заряд, так как емкость длинных проводников может достигать нескольких мФ.

Изолирующий материал имеет диэлектрическую проницаемость, которая увеличивает емкость

Неосторожное прикосновение к такому проводнику ПОСЛЕ проверки изоляции может быть смертельно опасным! Так как не все, даже электрики, являются любителями и знатоками физики, то буквальное знание инструкций по работе с мегаомметром является обязательным и проверяется независимо от образования и квалификации у всех работников, получающих допуск на право проводить измерения

Правила определяют, как измерить сопротивление изоляции в каждом конкретном случае. Измерение сопротивления изоляции мегаомметром — это действие, для которого он и предназначен. Например, измерение сопротивления изоляции электродвигателя или коэффициента абсорбции. С другой стороны, измерение сопротивления обмоток постоянному току предпочтительно проводить другим прибором (омметром, а лучше мостом постоянного тока), хотя мегаомметр может работать в диапазоне низких сопротивлений, результаты будут грубыми. Можно лишь прозвонить проводник мегаомметром — в этом случае он покажет нулевое сопротивление или очень близкое к нему.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий