От чего зависит и как определяется модуль упругости бетона: важные моменты

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.


Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле

()

где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);

F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.

5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле

()

где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;

P1— соответствующее приращение внешней нагрузки;

ε — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

В пределах ступени нагружения деформации определяют по линейной интерполяции.

5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле

()

где ε — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

5.4 Значения ε и ε определяют по формулам:

ε = ε1 — ∑ε1п; ()

ε = ε2 — ∑ε2п, ()

где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;

∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.

Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.

5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:

ε1 = Dl1l1; ()

ε2 = Dl2l2, ()

где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;

l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.

При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.

5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.

Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле

()

где — среднее значение указанных величин в серии образцов данного размера;

yiзначение указанных величин по отдельным образцам;

п — число образцов в серии.

5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.

В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:

а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;

б) модуль упругости бетона отдельных образцов, МПа;

в) средний модуль упругости бетона в серии образцов, МПа;

г) значение коэффициента Пуассона отдельных образцов;

д) среднее значение коэффициента Пуассона в серии образцов;

е) база измерения деформаций, мм;

ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);

з) температура нагрева;

и) температура и относительная влажность воздуха помещения, в котором производились испытания.

В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.

5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .

Способы определения

Модуль упругости бетона определяют:

  • механическим испытанием образцов;
  • неразрушающим ультразвуковым методом, основанным на сравнении скорости распространения волн в существующей конструкции и испытанном образце с заданными характеристиками.

Механический способ

Исследование первым методом проводят согласно ГОСТ 24452-80. Изготавливают образцы с сечением в виде квадрата или круга с соотношением высоты к диаметру (ширине), равным 4.

Образцы сериями по три штуки выбуривают, высверливают или выпиливают из готовых изделий, либо набивают формы согласно ГОСТ 10180-78. До начала испытаний призмы или цилиндры выдерживают под влажной тканью.

Для определения модуля упругости бетона используют прессы со специальными базами для измерения деформаций. Они состоят из приборов, расположенных под разными углами к граням образца. Индикаторы крепят к стальным рамкам или приклеенным опорным вставкам.

Если испытания проводят для конструкций, работающих при повышенной влажности или высокой температуре, выполняют специальную подготовку по ГОСТ 24452-80.

Испытания проводят по схеме:

  1. Образцы с индикаторами помещают под пресс, совмещая ось заготовки с центром плиты оборудования. Величину разрушающей нагрузки назначают, исходя из марочной прочности бетона.
  2. Нагрузку увеличивают постепенно, ступенями по 10% от разрушающей. Выдерживают интервалы 4-5 минут.
  3. Доводят усилие до 40-45% от максимального. Если программа не предусматривает другие требования, приборы снимают. Дальнейшее нагружение проводят с постоянной скоростью.
  4. Производят обработку результатов для каждого образца при нагрузке, равной 30% от разрушающей. Все данные заносят в журнал испытаний.

На основе исследований можно судить о начальном модуле упругости бетона. Эта величина характеризует свойства материала при нагрузке, в пределах которой в образцах возникают обратимые изменения. Показатель обозначается как Eb, его значение для каждого класса бетона внесено в таблицы строительных норм и маркировку изделий.

Так, модуль упругости бетона В15 естественного твердения составляет 23, а подвергнутого тепловой обработке 25 МПа*10-3.

Величина модуля упругости бетона для классов В20, В25, В30, В35 и В40 равна 27, 30, 32,5, 34,5 и 36 МПа*10-3. В пропаренных конструкциях она соответствует 24,5, 27, 29, 31 и 32,5 МПа*10-3.

Ультразвуковой способ

Применяется для исследования конструкций без их локального разрушения. При повышенной влажности такой метод определяет модуль упругости с погрешностью 15-75%, так как скорость распространения ультразвуковых колебаний в водной среде возрастает.

Чтобы избежать ошибок при измерениях, разработан метод определения модуля Юнга с учетом влажности бетона. Он основан на опытных испытаниях серий образцов с различной водонасыщенностью.

Нормативные и расчетные значения сопротивления бетона получают, используя корректирующие коэффициенты с учетом условий работы конструкции. Методика расчета описана в СП 63.13330.2012.

виды, классификация. От чего зависит

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.

Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60 Тяжёлые Естественный цикл затвердевания — — — 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40 Тепловая обработка при атмосферном давлении — — — — 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36 Автоклавная обработка — — — — 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30 Мелкозернистые А-группа (естественное отвердение) — — — — 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5 — — — — Тепловая обработка при атмосферном давлении — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5 — — — — Б-группа (естественное отвердение) — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 — — — — — — Теплообработка при автоклавном давлении — — — — 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5 В-группа автоклавного отвердения — — — — — — — — — 16,5 18 19,5 21 21 22 23 24 24,5 25 Лёгкие и горизонтальные — средняя плотность D 800 — — — 4 4,5 5 5,5 — — — — — — — — — — — — 1000 — — — 5 5,5 6,3 7,2 8 8,4 — — — — — — — — — — 1200 — — — 6 6,7 7,6 8,7 9,5 10 10,5 — — — — — — — — — 1400 — — — 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5 — — — — — — 1600 — — — — 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18 — — — — — 1800 — — — — — 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21 — — — — 2000 — — — — — — 14,5 16 17 18 19,5 21 22 23 23,5 — — — — Ячеистые, автоклавное твердение, плотность D 500 1,1 1,4 — — — — — — — — — — — — — — — — — 600 1,4 1,7 1,8 2,1 — — — — — — — — — — — — — — — 700 — 1,9 2,2 2,5 2,9 — — — — — — — — — — — — — — 800 — — — 2,9 3,4 4 — — — — — — — — — — — — — 900 — — — — 3,8 4,5 5,5 — — — — — — — — — — — — 1000 — — — — — 6 7 — — — — — — — — — — — — 1100 — — — — — 6,8 7,9 8,3 8,6 — — — — — — — — — — 1200 — — — — — — 8,4 8,8 9,3 — — — — — — — — — — Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация

При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция

Модуль упругости — от чего он зависит

Бетонные арки. Фото

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Автоклавная обработка

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (

Что это такое

Определение

Идеальное время для бетонных работ на открытом воздухе — теплый сезон. Увы, не всегда есть возможность дождаться весны: в ряде случаев монолитное строительство осуществляется и при отрицательных температурах.

При бетонировании в мороз основная проблема — дать бетону набрать прочность до начала кристаллизации воды в нем. Основные методы ее решения сводятся к теплоизоляции опалубки или подогреву уложенной смеси. При этом выбор конкретного решения определяется прежде всего тем, насколько быстро форма с бетоном будет остывать.

Скорость же, с которой определенная конструкция будет терять тепло, определяется отношением площади ее охлаждаемой поверхности к объему.

Практический вывод: медленнее всего будет остывать идеальный шар.

Модуль поверхности бетонной конструкции — это, собственно, и есть отношение ее охлаждаемой площади к внутреннему объему. Формула модуля поверхности бетона предельно проста: Мп = S/V, где Мп — модуль поверхности; S — площадь поверхности конструкции, контактирующая с холодным воздухом, грунтом или охлажденными ниже нуля прочими элементами конструкции; V — полный объем монолита.

Поскольку в числителе формулы значение указывается в квадратных метрах (м2), а в знаменателе — в кубических (м3), искомый параметр будет измеряться в странных единицах, описываемых как 1/м, или м^-1.

При укладке бетона на непромерзший грунт нижняя поверхность фундамента исключается из расчетов.

Примеры расчета

Давайте рассчитаем интересующий нас параметр для плитного фундамента размером 6х10 м и толщиной 0,25 м, укладываемого при отрицательной температуре окружающего воздуха на талый грунт.

  1. Очевидно, что охлаждаться будут все поверхности плиты, кроме нижней: она ведь контактирует с грунтом, имеющим температуру выше нуля. Складываем их площади: (6 х 0,25) х 2 + (10 х 0,25) х 2 + 6 х 10 = 3 + 5 + 60 = 68 м2.
  2. Рассчитываем объем плиты. Он равен, как мы помним из школьного курса геометрии, произведению сторон прямоугольного параллелепипеда: 10 х 6 х 0,25 = 15 м3.
  3. Вычисляем модуль поверхности: 68 м2 / 15 м3 = 4,5(3) 1/м.

На практике расчеты балок, цилиндров с переходами диаметров и прочих конструкций могут быть достаточно сложны и занимать значительное время. Как и все люди, строители склонны по возможности упрощать себе жизнь; для этой цели существует несколько упрощенных формул расчетов для основных конструктивных элементов.

Конструктивный элементФормула расчета
Балки и колонны прямоугольного сечения со сторонами сечения, равными A и BМп = 2/А + 2/В. Длина балки или высота колонны не влияет на модуль поверхности и не учитывается в расчетах.
Балки и колонны квадратного сечения со стороной сечения, равной АМп = 4/А
Куб со стороной АМп = 6/А. В этом случае учитываются все поверхности куба; расчет актуален для случая, когда все они охлаждаются (куб стоит на мерзлом грунте и контактирует с холодным воздухом).
Отдельно стоящий на мерзлом грунте параллелепипед со сторонами А, В и СМп = 2/А + 2/В + 2/С
Параллелепипед со сторонами А, В и С, прилегающий одной из граней к теплому массивуМп = 2/А + 2/В + 1/С
Цилиндр с радиусом R и высотой СМп = 2/R + 2/С
Плита или стена толщиной А, охлаждаемая с обеих сторонМп = 2/А

Наглядный пример: монолитная стена охлаждается с обеих сторон.

Модуль упругости бетона (Еб): способы определения значения

Порядок определения  Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.

Механическое испытание

При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.

ФОТО: nilstroi.ruДля проведения испытания требуется специальное оборудование

Материалы и инструменты

Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.

Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.

ФОТО: beton-house.comОбразец помещается под пресс

Схема испытания образцов

Испытания выполняются в следующей последовательности:

  1. Образцы подготавливаются и с индикаторами помещаются под пресс, добиваясь совмещения осей образца и центра плиты. Назначают разрушающую нагрузку в т/м2. Величина зависит от марочной прочности бетона.
  2. Производят ступенчатое увеличение нагрузки с шагом 10 % от разрушающей и интервалом 4-5 минут.
  3. Доводят значение до 40-45 % от максимального. При отсутствии дополнительных требований приборы снимают, а дальнейшее нагружение выполняют с постоянной скоростью.
  4. Результаты для каждого образца обрабатывают, когда нагрузка составляет 30 % от разрушающей. Данные отображаются в журнале испытаний.

По проведенным исследованиям определяют начальный модуль упругости Еб. Нормативные значения для каждого класса содержатся в таблицах со строительными нормами и маркировке изделия. Для В15, В20, В25, В30, полученного в условиях естественного твердения, коэффициент равен 23, 27, 30, 32,5 МПа×10-3 соответственно, в условиях термической обработки – 25, 24,5, 27, 29.

ФОТО: studfile.netНагрузка повышается ступенчато

Неразрушающий ультразвуковой способ

Механический способ предполагает выемку образца из уже готовой конструкции. Это не всегда удобно и сопряжено с рядом трудностей. Ультразвуковой способ позволяет обойтись без локального разрушения. В условиях повышенной влажности погрешность составляет 15 -75 % из-за более высокой скорости распространения ультразвуковых волн в водной среде. Существует метод, позволяющий найти значение при различной влажности материала. Испытания проводятся на образцах, имеющих различную водонасыщенность.

Для нахождения нормативных и расчётных значений используют корректирующие коэффициенты, учитывая соответствующие значения. Методика приведена в СП 63.13330.2012.

Watch this video on YouTube

Модуль упругости бетона

Одной из важнейших характеристик бетона является модуль его упругости. Под упругостью понимают способность материала к обратимой деформации после воздействия на него механических сил. Именно такие деформации и называют модулем упругости бетона. В отличие от ряда других материалов, упругость бетона является достаточно сложной функцией. Реакция материала на деформирующие нагрузки или кратковременные напряжения напоминает реакцию пружины. Модуль упругости возрастает пропорционально с увеличением прочности бетона. Так же он зависит и от пористости материла – чем она выше, тем ниже данный показатель. Так, разница модуля упругости у тяжелых бетонов и у ячеистых будет отличаться примерно в 2-2,5 раза. Таким образом, модуль упругости бетона напрямую зависит от его структуры. Следствием данного вывода является тот факт, что значение модуля упругости связано не только с качеством исходных материалов, но и с технологией его производства. Поэтому в нормативной документации всегда четко прописываются значения модулей для каждого класса бетона.

Модуль упругости бетона рассчитывается в двух конфигурациях – как динамический и статический. Динамический модуль упругости определяется в процессе колебания опытного образца и его значение является более высоким, чем у статического. Статический модуль упругости позволяет дополнительно определить и ползучесть бетона, которая характеризует динамику появления деформация при постоянных нагрузках.

При проведении исследований исходят из посылки тождества модулей упругости бетона на растяжение и на сжатие. Однако в тех случаях, когда напряжение превышает 0,2 предела прочности бетона, начинают наблюдаться остаточные деформации. Тогда в местах сцепления заполнителей с цементом начинают образовываться микротрещины, которые с течением времени увеличиваются и приводят к искрашиванию или разрушению цементного камня.

Суть испытания заключается в подвергании образца постоянной непрерывно возрастающей нагрузке до окончательного его разрушения. Для этого применяются нагружающие установки. После этого составляется диаграмма, которая раскрывает зависимость между показателями нагрузки и деформации. По окончании работы со всеми образцами модуль упругости рассчитывается как среднее арифметическое показателей всех образцов, задействованных в ходе эксперимента.

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс

Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Определение электрического сопротивления опытного образца

Поделитесь в социальных сетях:FacebookX
Напишите комментарий